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Data Format Classification for Autonomous
Radio Receivers

M. Simon1 and D. Divsalar1

We present maximum-likelihood (ML) coherent and noncoherent classifiers for
discriminating between non-return to zero (NRZ) and Manchester coded data
formats for binary phase-shift-keying (BPSK) and quadrature phase-shift-keying
(QPSK) modulations. Small and large signal-to-noise ratio (SNR) approximations
to the ML classifiers also are proposed that lead to simpler implementation with
comparable performance in their respective SNR regions. Both suppressed and
residual carrier cases are considered, and various numerical comparisons are made
among the various configurations based on the probability of misclassification as a
performance criterion.

I. Introduction

In autonomous radio operation, aside from classifying the modulation type, e.g, deciding between
binary phase-shift keying (BPSK) and quadrature phase-shift keying (QPSK), it is also desirable to have
an algorithm for choosing the data format, e.g., non-return to zero (NRZ) versus Manchester encoding.
Two different scenarios are of interest. In one case, independent of the data format, the modulations
are assumed to be fully suppressed carrier. In the other case, that is typical of the current Electra radio
design, an NRZ data format is always used on a fully suppressed carrier modulation whereas a residual
carrier modulation always employs Manchester coded data which contains a null in its spectrum at dc
and thereby allows for extraction of the carrier using a phase-locked loop. In the latter case, the data
format classification algorithm and its performance will clearly be a function of the modulation index,
i.e., the allocation of the power to the discrete and data-modulated signal components.

In this article, we derive the maximum-likelihood (ML)-based data format classification algorithms
as well as reduced-complexity versions of them obtained by applying suitable approximations of the
nonlinearities resulting from the ML formulation. As in previous classification problems of this type, we
shall first assume that all other system parameters are known. Following this, we relax the assumption
of known carrier phase and, as was done for the modulation classification investigation, we shall consider
the noncoherent version of the ML classifiers. Numerical performance evaluation will be obtained by
computer simulations and, wherever possible, by theoretical analyses to verify the simulation results.

1 Communications Architectures and Research Section.

The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of
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II. Maximum-Likelihood Coherent Classifier of Data Format for BPSK

We begin by considering suppressed-carrier BPSK modulation and a choice between NRZ and Manch-
ester encoding. Thus, the received signal is given by

r(t) =
√

2P

( ∞∑
n=−∞

anp
(
t − nTb

))
cos ωct + n(t) (1)

where P is the signal power, {an} is the sequence of binary independent, identically distributed (i.i.d.)
data taking on values ±1 with equal probability, p(t) is the pulse shape (the item to be classified), ωc is
the radian carrier frequency, and n (t) is a bandpass additive white Gaussian noise (AWGN) source with
single-sided power spectral density N0 W/Hz. Based on the above AWGN model, then for an observation
of Kb bit intervals, the conditional-likelihood function (CLF) is given by

p
(
r(t) |{an} , p(t)

)
=

1√
πN0

exp


− 1

N0

∫ KbTb

0

[
r(t) −

√
2P

( ∞∑
n=−∞

anp
(
t − nTb

))
cos ωct

]2

dt




= C exp

(
2
√

2P

N0

Kb−1∑
k=0

ak

∫ (k+1)Tb

kTb

r(t)p
(
t − kTb

)
cos ωctdt

)

= C

Kb−1∏
k=0

exp

(
2
√

2P

N0
ak

∫ (k+1)Tb

kTb

r(t)p
(
t − kTb

)
cos ωctdt

)
(2)

where C is a constant that has no bearing on the classification. Averaging over the i.i.d. data sequence
gives

p
(
r(t) |p (t)

)
= C

Kb−1∏
k=0

cosh

(
2
√

2P

N0

∫ (k+1)Tb

kTb

r(t)p
(
t − kTb

)
cos ωctdt

)
(3)

Finally, taking the logarithm of Eq. (3), we obtain the log-likelihood function (LLF)

Λ �= ln p
(
r(t) |p (t)

)
=

Kb−1∑
k=0

ln cosh

(
2
√

2P

N0

∫ (k+1)Tb

kTb

r(t)p(t − kT ) cos ωctdt

)
(4)

where we have ignored the additive constant lnC.

For NRZ data, p(t) is a unit rectangular pulse of duration Tb, i.e,

p1(t) =
{

1, 0 ≤ t ≤ Tb

0, otherwise (5)

For Manchester encoded data, p(t) is a unit square-wave pulse of duration Tb, i.e,
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p2(t) =
{

1, 0 ≤ t ≤ Tb/2
−1, Tb/2 ≤ t ≤ Tb

(6)

Thus, defining the received observables

rk(l) �=
∫ (k+1)Tb

kTb

r(t)pl

(
t − kTb

)
cos ωctdt =




∫ (k+1)Tb

kTb
r(t) cos ωctdt; l = 1

∫ (k+1/2)Tb

kTb
r(t) cos ωctdt −

∫ (k+1)Tb

(k+1/2)Tb
r(t) cos ωctdt; l = 2

(7)

then a classification choice between the two pulse shapes based on the LLF would be to choose Manchester
if

Kb−1∑
k=0

ln cosh

(
2
√

2P

N0
rk(1)

)
<

Kb−1∑
k=0

ln cosh

(
2
√

2P

N0
rk(2)

)
(8)

Otherwise, choose NRZ.

III. Reduced-Complexity Data Format BPSK Classifiers

To simplify the form of the classification rule in Eq. (8), we replace the ln cosh(·) function by its small
and large argument approximations. In particular,

ln coshx ∼=
{

x2/2; x small
|x| − ln 2; x large

(9)

Thus, for low SNR, Eq. (8) simplifies to

Kb−1∑
k=0

(∫ (k+1)Tb

kTb

r(t) cos ωctdt

)2

<

Kb−1∑
k=0

(∫ (k+1/2)Tb

kTb

r(t) cos ωctd −
∫ (k+1)Tb

(k+1/2)Tb

r(t) cos ωctdt

)2

(10)

or

Kb−1∑
k=0

∫ (k+1/2)Tb

kTb

r(t) cos ωctdt

∫ (k+1)Tb

(k+1/2)Tb

r(τ) cos ωcτdτ < 0 (11)

For high SNR, Eq. (8) reduces to

Kb−1∑
k=0

∣∣∣∣∣
∫ (k+1/2)Tb

kTb

r(t) cos ωctdt +
∫ (k+1)Tb

(k+1/2)Tb

r(t) cos ωctdt

∣∣∣∣∣

<

Kb−1∑
k=0

∣∣∣∣∣
∫ (k+1/2)Tb

kTb

r(t) cos ωctdt −
∫ (k+1)Tb

(k+1/2)Tb

r(t) cos ωctdt

∣∣∣∣∣ (12)
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Note that while the optimum classifier of Eq. (8) requires knowledge of SNR, the reduced-complexity
classifiers of Eqs. (10) and (12) do not. Figure 1 is a block diagram of the implementation of the low-
and high-SNR classifiers defined by Eqs. (11) and (12).

IV. Probability of Misclassification for Coherent BPSK

A. Exact Evaluation

To illustrate the behavior of the misclassification probability, PM , with signal-to-noise ratio (SNR), we
consider the low-SNR case and evaluate first the probability of the event in Eq. (11) given that the trans-
mitted data sequence was in fact NRZ encoded. In particular, we recognize that given a particular data se-
quence of Kb bits, Xck =

∫ (k+1/2)Tb

kTb
r(t) cos ωctdt and Yck =

∫ (k+1)Tb

(k+1/2)Tb
r(τ) cos ωctdτ ; k = 0, 1, · · · , Kb − 1

are mutually independent and identically distributed (i.i.d.) Gaussian random variables (RVs). Thus,
the LLF

D =
Kb−1∑
k=0

∫ (k+1/2)Tb

kTb

r(t) cos ωctdt

∫ (k+1)Tb

(k+1/2)Tb

r(τ) cos ωcτdτ =
Kb−1∑
k=0

XckYck (13)

(a)

r (t )

Delay
Tb / 2

NRZ
>0
<0

Manchester

Data
Format

Decision

Σ (•) dt

Kb − 1

k  = 0

∫  (•) dt
( k + 1)Tb

( k + 1/2)Tb

cos ωc t

cos ωc t

NRZ
>0
<0

Manchester

Data
Format

Decision

∫  (•) dt
( k + 1)Tb

( k + 1/2)Tb

∫  (•) dt
( k + 1)Tb

( k + 1/2)Tb

Σ (•) dt

Kb − 1

k  = 0

−

+

| • |

+

+

−

r (t )

(b)

Fig. 1.  Reduced-complexity coherent data format classifiers for BPSK:  (a) low SNR and (b) high SNR.

Delay
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is a special case of a quadratic form of real Gaussian RVs and the probability of the event in Eq. (11),
namely, Pr{D < 0} can be evaluated in closed form by applying the results in [1, Appendix B] and
the additional simplification of these in [2, Appendix 9A]. To see this connection, we define the com-
plex Gaussian RVs Xk = Xck + jXc,k+1 and Yk = Yck + jYc,k+1. Then, the complex quadratic form
XkY ∗

k + X∗
kYk = 2 (XckYck + Xc,k+1Yc,k+1). Arbitrarily assuming that Kb is even, then we can rewrite

D of Eq. (13) as

D =
1
2

Kb/2−1∑
k=0

(
XkY ∗

k + X∗
kYk

)
(14)

Comparing Eq. (14) with [1, Eq. (B.1)], we see that the former is a special case of the latter, corresponding
to A = B = 0, C = 1/2. Specifically, making use of the first and second moments of Xk and Yk given by

Xk = Y k =
(
ak + jak+1

)√
P/8Tb

µxx =
1
2
E

{∣∣Xk − Xk

∣∣2} = N0Tb/8

µyy =
1
2
E

{∣∣Yck − Y ck

∣∣2} = N0Tb/8

µxy =
1
2
E

{(
Xck − Xck

) (
Yck − Y ck

)∗}
= 0

(15)

then from [2, Eq. (9A.15)]

PM (1) =
1
2

+
1

2Kb−1

Kb/2∑
k=1

(
Kb − 1

Kb/2 − k

) [
Qk(a, b) − Qk(b, a)

]
(16)

where Qk(a, b) is the kth-order Marcum Q-function and

a =

√
v (ξ1v − ξ2)

2

b =

√
v (ξ1v + ξ2)

2

(17)

with
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v =

√
1

µxxµyy
=

8
N0Tb

ξ1 =
1
2

Kb/2−1∑
k=0

(∣∣Xck

∣∣2 µyy +
∣∣Y ck

∣∣2 µxx

)
= Kb

PT 3
b N0

64

ξ2 =
Kb/2−1∑

k=0

∣∣Xck

∣∣∣∣Y ck

∣∣ = Kb
PT 2

b

8

(18)

Substituting Eq. (18) into Eq. (17) gives

a = 0

b =

√
Kb

(
PTb

N0

)
=

√
Kb

(
Eb

N0

) (19)

However,

Qk(0, b) =
k−1∑
n=0

exp
(
−b2

2

) (
b2/2

)n

n!

Qk(b, 0) = 1

(20)

Thus, using Eqs. (19) and (20) in Eq. (16) gives the desired result:

PM (1) =
1
2

+
1

2Kb−1

Kb/2∑
k=1

(
Kb − 1

Kb/2 − k

) [
k−1∑
n=0

exp
(
−KbEb

2N0

)
(KbEb/2N0)

n

n!
− 1

]
(21)

Noting that

Kb/2∑
k=1

(
Kb − 1

Kb/2 − k

)
= 2Kb−2 (22)

then Eq. (21) further simplifies to

PM (1) =
1

2Kb−1

Kb/2∑
k=1

(
Kb − 1

Kb/2 − k

) k−1∑
n=0

exp
(
−KbEb

2N0

)
(KbEb/2N0)

n

n!
(23)

To compute the probability of choosing NRZ when in fact Manchester is the true encoding, we need
to evaluate Pr{D ≥ 0} = 1 − Pr{D < 0} when instead of Eq. (15) we have
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Xk = (ak + jak+1)

√
P

8
Tb

Y k = − (ak + jak+1)

√
P

8
Tb

(24)

Since the impact of the negative mean for Y k in Eq. (24) is to reverse the sign of ξ2 in Eq. (18), then we
immediately conclude that for this case the values of a and b in Eq. (19) merely switch roles, i.e.,

a =

√
Kb

(
Eb

N0

)

b = 0

(25)

Substituting these values in Eq. (16) now gives

PM (2) = 1 −


1

2
+

1
2Kb−1

Kb/2∑
k=1

(
Kb − 1

Kb/2 − k

) [
1 −

k−1∑
n=0

exp
(
−KbEb

2N0

)
(KbEb/2N0)

n

n!

]
 (26)

which again simplifies to

PM (2) =
1

2Kb−1

Kb/2∑
k=1

(
Kb − 1

Kb/2 − k

) k−1∑
n=0

exp
(
−KbEb

2N0

)
(KbEb/2N0)

n

n!
(27)

Since Eqs. (23) and (27) are identical, the average probability of mismatch, PM , is then either of the two
results.

Illustrated in Fig. 2 are numerical results for the misclassification probability obtained by computer
simulation for the optimum and reduced-complexity data format classifiers as given by Eqs. (8), (11),
and (12). Also illustrated are the numerical results obtained from the closed-form analytical solution given
in Eq. (23) for the low-SNR reduced-complexity scheme. As can be seen, the agreement between theo-
retical and simulated results is exact. Furthermore, the difference in performance between the optimum
and reduced-complexity classifiers is quite small over a large range of SNRs.

B. Asymptotic Behavior

To evaluate the asymptotic (large Kb) behavior of the misclassification probability, we apply the
central limit theorem to the quadratic form in Eq. (13). Specifically, in the limit of large Kb, D tends to
a Gaussian RV with mean

D = KbXckY ck =
KbPT 2

b

8
(28)

and variance

σ2
D = Kb var {XckYck} = Kb

[
X2

ck Y 2
ck − Xck

2
Yck

2
]

(29)

7



HIGH-SNR
APPROXIMATION

SIMULATIONS

OPTIMUM ML CLASSIFIER
SIMULATIONS

LOW-SNR APPROXIMATION
SIMULATIONS AND

ANALYSIS

ASYMPTOTIC Q-FUNCTION
RESULTS

COHERENT CLASSIFIER

Kb = 8

Kb = 16

Kb = 32

−2 −1 0 1 2 3 4 5 6

Eb / N 0, dB

10−6

10−5

10−4

10−3

10−2

10−1

100

P
R

O
B

A
B

IL
IT

Y
 O

F
 M

IS
C

LA
S

S
IF

IC
A

T
IO

N

Fig. 2.  A comparison of the performance of coherent data format classifiers
for BPSK modulation.

After some manipulation, it can be shown that Eq. (29) can be expressed as

σ2
D = Kb

[
var {Xck} var {Yck} + var {Xck}Yck

2
+ var {Yck}Xck

2
]

= Kb

[(
N0Tb

8

)2

+ 2
(

N0Tb

8

) (
PT 2

b

8

)]
= Kb

(
N0Tb

8

)2 (
1 + 2

Eb

N0

)
(30)

Thus, in view of the Gaussian assumption, PM = Pr{D < 0} is obtained in the form of a Gaussian
Q-function, namely,

PM = Q

(
D

σD

)
= Q




√
Kb

(Eb/N0)
2

1 + 2Eb/N0


 (31)

The asymptotic misclassification probability of Eq. (31) is superimposed on the results in Fig. 2.
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V. Maximum-Likelihood Coherent Classifier of Data Format for QPSK

For QPSK modulation, the received signal is given by

r(t) =
√

P

( ∞∑
n=−∞

anp (t − nTs)

)
cos ωct +

√
P

( ∞∑
n=−∞

bnp (t − nTs)

)
sinωct + n(t) (32)

where now {an} and {bn} are the in-phase (I) and quadrature (Q) sequences of binary i.i.d. data taking on
values ±1 with equal probability. For simplicity, we have assumed that the I and Q baseband waveforms
have the same data format. For an observation of Ks symbol intervals, each of duration Ts = 2Tb, the
CLF is given by

p
(
r(t)|{an}, {bn}, p(t)

)
=

1√
πN0

exp

{
− 1

N0

∫ KsTs

0

[
r(t) −

√
P

( ∞∑
n=−∞

anp
(
t − nTs

))
cos ωct

−
√

P

( ∞∑
n=−∞

bnp (t − nTs)

)
sinωct

]2

dt




= C exp

(
2
√

P

N0

Ks−1∑
k=0

ak

∫ (k+1)Ts

kTs

r(t)p (t − kTs) cos ωctdt

)

× exp

(
2
√

P

N0

Ks−1∑
k=0

bk

∫ (k+1)Ts

kTs

r(t)p (t − kTs) sinωctdt

)

= C

Ks−1∏
k=0

exp

(
2
√

P

N0
ak

∫ (k+1)Ts

kTs

r(t)p (t − kTs) cos ωctdt

)

× exp

(
2
√

P

N0

Ks−1∑
k=0

bk

∫ (k+1)Ts

kTs

r(t)p (t − kTs) sinωctdt

)
(33)

Averaging over the i.i.d. data sequences and taking the logarithm gives the LLF

Λ �= ln p
(
r(t)|p(t)

)
=

Ks−1∑
k=0

[
ln cosh

(
2
√

P

N0

∫ (k+1)Ts

kTs

r(t)p
(
t − kTs

)
cos ωctdt

)

+ ln cosh

(
2
√

P

N0

∫ (k+1)Ts

kTs

r(t)p (t − kTs) sinωctdt

)]
(34)

Analogous to Eq. (7), defining the received I and Q observables
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rck(l) �=
∫ (k+1)Ts

kTs

r(t)pl (t − kTs) cos ωctdt

rsk(l) �=
∫ (k+1)Ts

kTs

r(t)pl (t − kTs) sinωctdt

(35)

then the classification rule for choosing the data format is as follows: Choose Manchester encoding if

Ks−1∑
k=0

[
ln cosh

(
2
√

P

N0
rck(1)

)
+ ln cosh

(
2
√

P

N0
rsk(1)

)]
<

Ks−1∑
k=0

[
ln cosh

(
2
√

P

N0
rck(2)

)
+ ln cosh

(
2
√

P

N0
rsk(2)

)]
(36)

Otherwise, choose NRZ.

VI. Reduced-Complexity Data Format QPSK Classifiers

Here again we may simplify the form of the classification rule in Eq. (36) by using the nonlinearity
approximations in Eq. (9). For example, for low SNR, the classification decision would be based on the
inequality

Ks−1∑
k=0

[∫ (k+1/2)Ts

kTs

r(t) cos ωctdt

∫ (k+1)Ts

(k+1/2)Ts

r(τ) cos ωcτdτ

+
∫ (k+1/2)Ts

kTs

r(t) sinωctdt

∫ (k+1)Ts

(k+1/2)Ts

r(τ) sinωcτdτ

]
< 0 (37)

Figure 3 illustrates the implementation of the classifier defined above.

VII. Probability of Misclassification for Coherent QPSK

Defining Xsk =
∫ (k+1/2)Ts

kTs
r(t) sinωctdt and Ysk =

∫ (k+1)Ts

(k+1/2)Ts
r(τ) sinωctdτ ; k = 0, 1, · · · , Ks − 1, and

assigning them to the complex Gaussian RVs Xk+Ks/2 = Xsk + jXs,k+1 and Yk+Ks/2 = Ysk + jYs,k+1,
then analogous to Eq. (14) we can write

D =
1
2

Ks−1∑
k=0

(
XkY ∗

k + X∗
kYk

)
(38)

where the means of the observables are now given by
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sin ωc t

NRZ
>0
<0

Manchester

Data
Format

Decision

∫  (•) dt
( k + 1)Ts

( k + 1/2)Ts

∫  (•) dt
( k + 1)Ts

( k + 1/2)Ts

Σ  (•)

Ks − 1

k  = 0

r (t )

cos ωc t

Delay
Ts / 2

Delay
Ts / 2

Fig. 3.  Reduced-complexity coherent data format classifiers for QPSK:  low SNR.

Xk = Y k = (ak + jak+1)

√
P

16
Ts; k = 0, 1, · · · , Ks/2 − 1

Xk = Y k = (bk + jbk+1)

√
P

16
Ts; k = Ks/2, Ks/2 + 1, · · · , Ks − 1

(39)

Since all the observables are again mutually i.i.d. Gaussian RVs, then the LLF in Eq. (38) is still a
quadratic form of Gaussian RVs and the probability Pr{D < 0} can be evaluated in closed form in the
same manner as before. For a fixed observation time, we have KsTs = KbTb and thus Ks = Kb/2.
Therefore, the number of Gaussian RV products in the quadratic form in Eq. (38) is the same as in
Eq. (14). Furthermore, we see that the moments needed to evaluate the parameters in Eq. (18) can be
obtained by replacing P with P/2 and Tb with Ts = 2Tb. Hence, we immediately conclude that the
probability of missed classification for the QPSK case is also given by Eq. (23). This should not be
surprising since the bit-error probability (BEP) of QPSK, which is evaluated from a receiver also derived
from LR considerations, is identical to that of BPSK.

VIII. Maximum-Likelihood Noncoherent Classifier of Data Format for BPSK

Here we assume that the carrier has a random phase, θ, that is unknown and uniformly distributed.
Thus, the received signal of Eq. (1) is now modeled as

r(t) =
√

2P

( ∞∑
n=−∞

anp (t − nTb)

)
cos (ωct + θ) + n(t) (40)

and the corresponding CLF becomes

p
(
r(t)|{an}, p(t), θ

)
= C

Kb−1∏
k=0

exp

(
2
√

2P

N0
ak

∫ (k+1)Tb

kTb

r(t)p (t − kTb) cos (ωct + θ) dt

)
(41)
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At this point, we have the option of first averaging over the random carrier phase and then the data or
vice versa. Considering the first option, we start by rewriting Eq. (41) as

p
(
r(t)|{an}, p(t), θ

)
= C exp


2

√
2P

N0

√√√√(
Kb−1∑
k=0

akrck

)2

+

(
Kb−1∑
k=0

akrsk

)2

cos (θ + η)




η = tan−1

Kb−1∑
k=0

akrsk

Kb−1∑
k=0

akrck

(42)

Averaging over the carrier phase results in (ignoring constants)

p
(
r(t)|{an}, p(t)

)
= I0


2

√
2P

N0

√√√√(
Kb−1∑
k=0

akrck

)2

+

(
Kb−1∑
k=0

akrsk

)2

 (43)

where I0(·) is the zero-order modified Bessel function of the first kind. Unfortunately, the average over
the data sequence cannot be obtained in closed form. Hence, the classification algorithm can only be
stated as follows: Given that NRZ was transmitted, choose the Manchester format if

E
a


I0


2

√
2P

N0

√√√√(
Kb−1∑
k=0

akrck(1)

)2

+

(
Kb−1∑
k=0

akrsk(1)

)2




 <

E
a


I0


2

√
2P

N0

√√√√(
Kb−1∑
k=0

akrck (2)

)2

+

(
Kb−1∑
k=0

akrsk (2)

)2




 (44)

where E
a
{·} denotes expectation over the data sequence a = (a0, a1, · · · , aKb−1). Otherwise, choose NRZ.

Consider now the second option where we first average over the data sequence. Then,

p
(
r(t)|p(t), θ

)
= C

Kb−1∏
k=0

E
ak

{
exp

(
2
√

2P

N0
ak

∫ (k+1)Tb

kTb

r(t)p (t − kTb) cos (ωct + θ) dt

)}

= C exp

[
ln

(
Kb−1∏
k=0

E
ak

{
exp

(
2
√

2P

N0
ak

∫ (k+1)Tb

kTb

r(t)p (t − kTb) cos (ωct + θ) dt

)})]

= C exp

[
Kb−1∑
k=0

ln

(
E
ak

{
exp

(
2
√

2P

N0
ak

∫ (k+1)Tb

kTb

r(t)p (t − kTb) cos (ωct + θ) dt

)})]

= C exp

[
Kb−1∑
k=0

ln cosh

(
2
√

2P

N0

∫ (k+1)Tb

kTb

r(t)p (t − kTb) cos (ωct + θ) dt

)]
(45)
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Thus, a classification between NRZ and Manchester encoding would be based on a comparison of

LR =

E
θ

{
exp

[
Kb−1∑
k=0

ln cosh

(
2
√

2P

N0

∫ (k+1)Tb

kTb
r(t)p1 (t − kTb) cos (ωct + θ) dt

)]}

E
θ

{
exp

[
Kb−1∑
k=0

ln cosh

(
2
√

2P

N0

∫ (k+1)Tb

kTb
r(t)p2 (t − kTb) cos (ωct + θ) dt

)]} (46)

to unity.

To simplify matters, before averaging over the carrier phase, one must employ the approximations to
the nonlinearities given in Eq. (9). In particular, for low SNR, we have

p
(
r(t)|p(t)

)
= E

θ


exp


1

2

Kb−1∑
k=0

(
2
√

2P

N0

∫ (k+1)Tb

kTb

r(t)p (t − kTb) cos (ωct + θ) dt

)2






= E
θ

{
exp

[
4P

N2
0

Kb−1∑
k=0

(rck cos θ − rsk sin θ)2
]}

= E
θ

{
exp

[
4P

N2
0

Kb−1∑
k=0

(
r2
ck + r2

sk

)
cos2 (θ + ηk)

]}

= exp

[
2P

N2
0

Kb−1∑
k=0

(
r2
ck + r2

sk

)]
E
θ

{
exp

[(
2P

N2
0

Kb−1∑
k=0

(
r2
ck + r2

sk

)
cos

(
2 (θ + ηk)

))]}

= exp

[
2P

N2
0

Kb−1∑
k=0

(
r2
ck + r2

sk

)]

× E
θ

{
exp

[(
2P

N2
0

(
cos 2θ

Kb−1∑
k=0

(
r2
ck + r2

sk

)
cos 2ηk − sin 2θ

Kb−1∑
k=0

(
r2
ck + r2

sk

)
sin 2ηk

))]}

= exp

[
2P

N2
0

Kb−1∑
k=0

(
r2
ck + r2

sk

)]

× I0


 2P

N2
0

√√√√(
Kb−1∑
k=0

(r2
ck + r2

sk) cos 2ηk

)2

+

(
Kb−1∑
k=0

(r2
ck + r2

sk) sin 2ηk

)2

 (47)

where

ηk = tan−1 rsk

rck
(48)
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Thus, since

cos 2ηk =
r2
ck − r2

sk

r2
ck + r2

sk

sin 2ηk =
2rckrsk

r2
ck + r2

sk

(49)

we finally have

p
(
r(t)|p(t)

)
= exp

[
2P

N2
0

Kb−1∑
k=0

(
r2
ck + r2

sk

)]
I0


 2P

N2
0

√√√√(
Kb−1∑
k=0

(r2
ck − r2

sk)

)2

+ 4

(
Kb−1∑
k=0

rckrsk

)2



= exp

[
2P

N2
0

Kb−1∑
k=0

(
r2
ck + r2

sk

)]
I0

(
2P

N2
0

∣∣∣∣∣
Kb−1∑
k=0

r̃2
k

∣∣∣∣∣
)

(50)

where

r̃k
�= rck + jrsk =

∫ (k+1)Tb

kTb

r(t)p (t − kTb) ejωctdt (51)

Finally then, the classification decision rule analogous to Eq. (44) is: Given that NRZ data were trans-
mitted, decide on Manchester coding if

exp

[
2P

N2
0

Kb−1∑
k=0

|r̃k(1)|2
]

I0

(
2P

N2
0

∣∣∣∣∣
Kb−1∑
k=0

r̃2
k(1)

∣∣∣∣∣
)

< exp

[
2P

N2
0

Kb−1∑
k=0

|r̃k(2)|2
]

I0

(
2P

N2
0

∣∣∣∣∣
Kb−1∑
k=0

r̃2
k(2)

∣∣∣∣∣
)

(52)

Equivalently, normalizing the observables to

r̃′k
�=

1
Tb

∫ (k+1)Tb

kTb

r(t)√
2P

p (t − kTb) ejωctdt (53)

then Eq. (52) becomes

exp

[(
2Eb

N0

)2 Kb−1∑
k=0

|r̃′k(1)|2
]

I0

((
2Eb

N0

)2
∣∣∣∣∣
Kb−1∑
k=0

r̃
′2
k (1)

∣∣∣∣∣
)

<

exp

[(
2Eb

N0

)2 Kb−1∑
k=0

|r̃′k(2)|2
]

I0

((
2Eb

N0

)2
∣∣∣∣∣
Kb−1∑
k=0

r̃
′2
k (2)

∣∣∣∣∣
)

(54)
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Since we have already assumed low SNR in arriving at Eq. (54), we can further approximate the
nonlinearities in that equation by their values for small arguments. Retaining only linear terms, we arrive
at the simplification

Kb−1∑
k=0

|r̃′k(1)|2 <

Kb−1∑
k=0

|r̃′k(2)|2 (55)

or, equivalently,

Kb−1∑
k=0

|r̃k(1)|2 <

Kb−1∑
k=0

|r̃k(2)|2 (56)

which again does not require knowledge of SNR. On the other hand, if we retain second-order terms, then
Eq. (54) simplifies to

Kb−1∑
k=0

|r̃′k(1)|2 +
1
4

(
2Eb

N0

)2

2

(
Kb−1∑
k=0

|r̃′k(1)|2
)2

+

∣∣∣∣∣
Kb−1∑
k=0

r̃
′2
k (1)

∣∣∣∣∣
2

 <

Kb−1∑
k=0

|r̃′k(2)|2 +
1
4

(
2Eb

N0

)2

2

(
Kb−1∑
k=0

|r̃′k(2)|2
)2

+

∣∣∣∣∣
Kb−1∑
k=0

r̃
′2
k (2)

∣∣∣∣∣
2

 (57)

which is SNR dependent.

Expanding Eq. (56) in the form of Eq. (10), we obtain

Kb−1∑
k=0

(∫ (k+1)Tb

kTb

r(t) cos ωctdt

)2

+

(∫ (k+1)Tb

kTb

r(t) sinωctdt

)2

<

Kb−1∑
k=0

(∫ (k+1/2)Tb

kTb

r(t) cos ωctdt −
∫ (k+1)Tb

(k+1/2)Tb

r(t) cos ωctdt

)2

+
Kb−1∑
k=0

(∫ (k+1/2)Tb

kTb

r(t) sinωctdt −
∫ (k+1)Tb

(k+1/2)Tb

r(t) sinωctdt

)2

(58)

or

Kb−1∑
k=0

∫ (k+1/2)Tb

kTb

r(t) cos ωctdt

∫ (k+1)Tb

(k+1/2)Tb

r(τ) cos ωcτdτ

+
Kb−1∑
k=0

∫ (k+1/2)Tb

kTb

r(t) sinωctdt

∫ (k+1)Tb

(k+1/2)Tb

r(τ) sinωcτdτ < 0

= Re

{
Kb−1∑
k=0

∫ (k+1/2)Tb

kTb

r(t)ejωctdt

∫ (k+1)Tb

(k+1/2)Tb

r(τ)e−jωctdτ

}
< 0 (59)

which is the analogous result to Eq. (11) for the coherent case.
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For high SNR, even after applying the approximations to the nonlinearities given in Eq. (9), it is still
difficult to average over the random carrier phase. Instead, we take note of the resemblance between
Eqs. (59) and (11) for the low-SNR case and propose an ad hoc complex equivalent to Eq. (12) for the
noncoherent high-SNR case, namely,

Kb−1∑
k=0

∣∣∣∣∣
∫ (k+1/2)Tb

kTb

r(t)ejωctdt +
∫ (k+1)Tb

(k+1/2)Tb

r(t)ejωctdt

∣∣∣∣∣

<

Kb−1∑
k=0

∣∣∣∣∣
∫ (k+1/2)Tb

kTb

r(t)ejωctdt −
∫ (k+1)Tb

(k+1/2)Tb

r(t)ejωctdt

∣∣∣∣∣ (60)

Figure 4 is a block diagram of the implementation of the low- and high-SNR classifiers defined by Eqs. (59)
and (60).
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Fig. 4.  Reduced-complexity noncoherent data format classifiers for BPSK modulation:  (a) low SNR and (b) high SNR.
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IX. Probability of Misclassification for Noncoherent BPSK

To compute the probability of misclassification, we note that Eq. (59) is still made up of a sum of
products of mutually independent real Gaussian RVs and thus can still be written in the form of Eq. (14)
with twice as many terms, i.e.,

D =
1
2

Kb−1∑
k=0

(XkY ∗
k + X∗

kYk) (61)

where now the complex Gaussian RVs are defined as Xk = Xck + jXsk and Yk = Yck + jYsk. The means
of the terms are given by

Xk = Y k = ak(cos θ − j sin θ)

√
P

8
Tb (62)

whereas the variances and cross-correlations are the same as in Eq. (15). Thus, since the magnitude of
the means in Eq. (62) is reduced by a factor of

√
2 relative to that of the means in Eq. (15), we conclude

that the probability of misclassification is obtained from Eq. (23) by replacing Eb/N0 with Eb/2N0 and
Kb with 2Kb, resulting in

PM =
1

22Kb−1

Kb∑
k=1

(
2Kb − 1
Kb − k

) k−1∑
n=0

exp
(
−KbEb

2N0

)
(KbEb/2N0)

n

n!
(63)

Furthermore, the asymptotic behavior of Eq. (63) for large Kb can be determined from Eq. (31) by making
the same replacements as above, resulting in

PM = Q




√
Kb

(Eb/N0)
2

2 + 2Eb/N0


 (64)

which for sufficiently large Eb/N0 approaches Eq. (31) for the coherent case.

Figure 5 illustrates numerical results for the misclassification probability obtained by computer simu-
lation for the low-SNR and high-SNR reduced-complexity data format classifiers as specified by Eqs. (59)
and (60), respectively, as well as the optimum classifier described by Eq. (46). Also illustrated are the
numerical results obtained from the closed-form analytical solution given in Eq. (63) for the low-SNR
reduced-complexity scheme (which are in exact agreement with the simulation results) and the asymptotic
results obtained from Eq. (64). As in the coherent case, the difference in performance between the low-
and high-SNR reduced-complexity classifiers is again quite small over a large range of SNRs. Further-
more, we see here again that the performances of the approximate but simpler classification algorithms
are in close proximity to that of the optimum one. Finally, a comparison between the corresponding
coherent and noncoherent classifiers is illustrated in Fig. 6 and reveals a penalty of approximately 1 dB
or less depending on the SNR.
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Fig. 5.  A comparison of the performance of noncoherent data format classifiers
for BPSK modulation.
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X. Maximum-Likelihood Noncoherent Classifier of Data Format for QPSK

Following the same approach as in Section V, the LLF for the noncoherent QPSK case is easily shown
to be

Λ �= ln p
(
r(t)|p(t)

)
= E

Θ

{
exp

(
Ks−1∑
k=0

[
ln cosh

(
2
√

P

N0

∫ (k+1)Ts

kTs

r(t)p
(
t − kTs

)
cos

(
ωct + θ

)
dt

)

+ ln cosh

(
2
√

P

N0

∫ (k+1)Ts

kTs

r(t)p (t − kTs) sin (ωct + θ) dt

)])}
(65)

Making the same small argument approximations to the nonlinearities, we get
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Fig. 6.  A comparison of the performance of coherent and noncoherent data format
classifiers for BPSK modulation: suppressed-carrier case.
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p
(
r(t)|p(t)

)
= E

θ


exp


1

2

Ks−1∑
k=0

(
2
√

P

N0

∫ (k+1)Ts

kTs

r(t)p
(
t − kTs

)
cos

(
ωct + θ

)
dt

)2

+
1
2

Ks−1∑
k=0

(
2
√

P

N0

∫ (k+1)Ts

kTs

r(t)p
(
t − kTs

)
sin

(
ωct + θ

)
dt

)2






= E
θ

{
exp

[
2P

N2
0

Ks−1∑
k=0

(
rck cos θ − rsk sin θ

)2 +
2P

N2
0

Ks−1∑
k=0

(
rck sin θ + rsk cos θ

)2

]}

= E
θ

{
exp

[
2P

N2
0

Ks−1∑
k=0

(
r2
ck + r2

sk

)
cos2

(
θ + ηk

)
+

2P

N2
0

Ks−1∑
k=0

(
r2
ck + r2

sk

)
sin2

(
θ + ηk

)]}

= exp

[
2P

N2
0

Ks−1∑
k=0

(
r2
ck + r2

sk

)]
(66)
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Comparing Eq. (66) with Eq. (50), we note the absence of the Bessel function factor. However, in arriving
at Eq. (56), which was based on retaining only linear terms, we approximated this factor by unity. Thus,
applying the same small argument approximation of the exponential as before, we again arrive at a
classification based on Eq. (56). Finally then, as in the coherent case, we conclude that the performance
of the noncoherent classifier of data format for QPSK is identical to that for BPSK.

XI. Maximum-Likelihood Coherent Classifier of Data Format for BPSK with
Residual and Suppressed Carriers

When NRZ data are transmitted, the received signal takes the form of Eq. (1) with p(t) = p1(t) and
P = Pt. On the other hand, when Manchester coded data are transmitted, the received signal has the
form

r(t) =
√

2Pc sinωct +
√

2Pd

( ∞∑
n=−∞

anp2

(
t − nTb

))
cos ωct + n(t) (67)

where Pc = Pt cos2 θm and Pd = Pt sin2 θm are, respectively, the powers allocated to the discrete and data-
modulated carriers with θm the phase modulation index. Then, analogous to Eq. (2), it is straightforward
to show that

p
(
r(t)| {an} , p2(t)

)
= C

Kb−1∏
k=0

exp

(
2
√

2Pc

N0

∫ (k+1)Tb

kTb

r(t) sinωctdt

)

× exp

(
2
√

2Pd

N0
ak

∫ (k+1)Tb

kTb

r(t)p2 (t − kTb) cos ωctdt

)
(68)

Averaging over the i.i.d. data sequence and taking the logarithm gives

ln p
(
r(t)|p(t)

)
=

Kb−1∑
k=0

2
√

2Pc

N0

∫ (k+1)Tb

kTb

r(t) sinωctdt

+
Kb−1∑
k=0

ln cosh

(
2
√

2Pd

N0

∫ (k+1)Tb

kTb

r(t)p2 (t − kTb) cos ωctdt

)
(69)

Finally then, we obtain the classification rule: Choose Manchester coding if

Kb−1∑
k=0

ln cosh

(
2
√

2Pt

N0

∫ (k+1)Tb

kTb

r(t)p1 (t − kTb) cos ωctdt

)
<

Kb−1∑
k=0

2
√

2Pc

N0

∫ (k+1)Tb

kTb

r(t) sinωctdt +
Kb−1∑
k=0

ln cosh

(
2
√

2Pd

N0

∫ (k+1)Tb

kTb

r(t)p2 (t − kTb) cos ωctdt

)
(70)

Otherwise, choose NRZ.
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Once again, to obtain the reduced-complexity version of Eq. (70) we use the nonlinearity approxima-
tions in Eq. (9). For the low-SNR case, we get after some manipulation

D
�=

Kb−1∑
k=0

[
2 (Pt − Pd)

N2
0

(
X2

ck + Y 2
ck

)
+

4 (Pt + Pd)
N2

0

XckYck −
√

2Pc

N0
(Xsk + Ysk)

]
< 0 (71)

where for convenience of notation as before we have defined

Xck =
∫ (k+1/2)Tb

kTb

r(t) cos ωctdt

Yck =
∫ (k+1)Tb

(k+1/2)Tb

r(τ) cos ωctdτ

Xsk =
∫ (k+1/2)Tb

kTb

r(t) sinωctdt

Ysk =
∫ (k+1)Tb

(k+1/2)Tb

r(τ) sinωctdτ ; k = 0, 1, · · · , Kb − 1

(72)

Alternatively, in terms of the modulation index, SNR, and normalized observables

X ′
ck

�=
Xck

Tb

√
2Pt

Y ′
ck

�=
Yck

Tb

√
2Pt

X ′
sk

�=
Xsk

Tb

√
2Pt

Y ′
sk

�=
Ysk

Tb

√
2Pt

(73)

Eq. (71) becomes

D
�=

Kb−1∑
k=0

[
2

Et

N0
cos2 θm

(
X

′2
ck + Y

′2
ck

)
+ 4

Et

N0

(
1 + sin2 θm

)
X ′

ckY ′
ck − cos θm (X ′

sk + Y ′
sk)

]
< 0 (74)

where Et/N0
�= PtTb/N0. Although the first two terms in the summation satisfy the type of quadratic

form considered in [1, Appendix B], unfortunately the last term, which does not contain second-order
Gaussian RVs, prevents analytically evaluating the misclassification probability in the same manner as
previously used in Section IV.A. Nevertheless, it is still possible to analytically evaluate the asymptotic
(large Kb) performance in the same manner as before. Here, however, because of the lack of symmetry of
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the two hypotheses, one must individually evaluate the two misclassification probabilities (the probability
of choosing Manchester when NRZ data are transmitted and vice versa) and then average the resulting
expressions.

Considering first the case where NRZ data are transmitted, i.e., the received signal takes the form of
Eq. (1), then after considerable manipulation, it can be shown that

D =
Kb

4

(
cos2 θm +

2Et

N0

)

σ2
D =

Kb

8
N0

Et

[
cos2 θm +

Et

N0

(
1 + sin4 θm

)
+ 4

(
Et

N0

)2
] (75)

Thus, making the same Gaussian assumption on D, the probability of misclassification for this case is
given by

PM1 = Pr {D < 0} = Q

(
D

σD

)
= Q




√√√√√√√√√
Kb

Et

N0

(
cos2 θm +

2Et

N0

)2

2

[
cos2 θm +

Et

N0

(
1 + sin4 θm

)
+ 4

(
Et

N0

)2
]


 (76)

For the case where Manchester coded data are transmitted, i.e., the received signal takes the form of
Eq. (67), then again, after considerable manipulation, it can be shown that

D = − Kb

4

(
cos2 θm +

2Et

N0
sin4 θm

)

σ2
D =

Kb

8
N0

Et

[
cos2 θm + 2

Et

N0
sin2 θm + 4

(
Et

N0

)2

sin6 θm

] (77)

whereupon the probability of misclassification becomes

PM2 = Pr{D > 0} = Q

(
− D

σD

)
= Q




√√√√√√√√√
Kb

Et

N0

(
cos2 θm +

2Et

N0
sin4 θm

)2

2

[
cos2 θm + 2

Et

N0
sin2 θm + 4

(
Et

N0

)2

sin6 θm

]

 (78)

Finally, assuming the equiprobable data format hypothesis, the asymptotic average probability of mis-
classification is the average of Eqs. (76) and (78), namely,

PM =
1
2

(PM1 + PM2) (79)

Note that for θm = 90o, Et = Eb, and Eq. (79) reduces to Eq. (31), as it should.
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For high SNR, using the approximation

ln coshx ∼= |x| − ln 2 (80)

we obtain, analogous to Eq. (71),

D
�=

Kb−1∑
k=0

[√
Pt |Xck + Yck| −

√
Pc (Xsk + Ysk) −

√
Pd |Xck − Yck|

]
< 0 (81)

or in terms of the modulation angle and the normalized observables,

D
�=

Kb−1∑
k=0

[
|X ′

ck + Y ′
ck| − (X ′

sk + Y ′
sk) cos θm − |X ′

ck − Y ′
ck| sin θm

]
< 0 (82)

Figure 7 is an illustration of the average (over the two hypotheses) misclassification probability for the
various coherent classification algorithms, where the results are all obtained by computer simulation. We
observe that, over a very wide range of SNRs, the performance of the high-SNR approximation classifier
is virtually a perfect match to that of the optimum classifier, but its implementation is somewhat sim-
pler. On the other hand, while the performance of the low-SNR classifier converges to that of the optimum
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Fig. 7.  Misclassification probability for residual carrier coherent classifier:  θm = 60 deg.
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classifier at low SNR as it should, at high SNR it results in considerable degradation. The reasoning behind
this relative difference in behavior between the approximate and optimum classifiers can be explained as
follows. Whereas at low SNR the maximum difference between ln cosh x and its high-SNR approximation
|x|−ln 2 occurs at x = 0 and is equal to ln 2, at high SNR the difference between ln coshx and its low-SNR
approximation x2/2 grows without bound, i.e., the difference between a linear and a square law behavior.
Thus, using the high-SNR approximation of ln coshx over the entire range of SNR is a much better fit
than using the low-SNR approximation over the same SNR range. Illustrated in Fig. 8 is a comparison of
the performances of the coherent classifiers for the residual and suppressed-carrier cases, the latter being
obtained from the discussion in Section II of this article. We observe that for the optimum and high-SNR
approximation classifiers the two are quite similar in performance although the suppressed-carrier one
is a bit inferior. This implies that a discrete carrier component is slightly influential in improving data
format classification for coherent communications.

XII. Maximum-Likelihood Noncoherent Classifier of Data Format for BPSK with
Residual and Suppressed Carriers

As in Section VIII, we again assume that the carrier has a random phase, θ, that is unknown and
uniformly distributed. Then when NRZ data are transmitted, the received signal takes the form of
Eq. (40) with p(t) = p1(t) and P = Pt. On the other hand, when Manchester-coded data are transmitted,
the received signal has the form

r(t) =
√

2Pc sin (ωct + θ) +
√

2Pd

( ∞∑
n=−∞

anp2 (t − nTb)

)
cos (ωct + θ) + n(t) (83)
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Fig. 8.  A comparison of misclassification probability for suppressed and
residual carrier coherent classifiers.
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Without going to great length, following the same procedure as in Section VIII, it is straightforward to
show that, analogous to Eq. (46), the likelihood ratio for choosing between NRZ and residual carrier
Manchester-coded data is given by

LR =

E
θ

{
exp

[
Kb−1∑
k=0

ln cosh

(
2
√

2Pt

N0

∫ (k+1)Tb

kTb

r(t)p1 (t − kTb) cos (ωct + θ) dt

)]}

E
θ

{
exp

[
Kb−1∑
k=0

ln cosh

(
2
√

2Pd

N0

∫ (k+1)Tb

kTb

r(t)p2(t − kTb) cos (ωct + θ) dt

)

+
2
√

2Pc

N0

Kb−1∑
k=0

∫ (k+1)Tb

kTb

r(t) sin (ωct + θ) dt

]}
(84)

To obtain a low-SNR classifier, we approximate the nonlinearities in Eq. (84) by their small argu-
ment values, which results after considerable simplification in a test analogous to Eq. (55), given by the
following: Choose Manchester if

Kb−1∑
k=0

|r̃′k(1)|2 <
(
sin2 θm

) Kb−1∑
k=0

|r̃′k(2)|2 +
(
cos2 θm

) ∣∣∣∣∣
Kb−1∑
k=0

r̃′k(1)

∣∣∣∣∣
2

(85)

where as before the real and imaginary components of r̃k(l) = (Tb

√
2Pt)r̃′k(l); l = 1, 2 are defined in

Eq. (35). Alternatively, in terms of integrals, Eq. (85) becomes

Kb−1∑
k=0

∣∣∣∣∣
∫ (k+1/2)Tb

kTb

r (t) ejωctdt +
∫ (k+1)Tb

(k+1/2)Tb

r (t) ejωctdt

∣∣∣∣∣
2

<

(
sin2 θm

) Kb−1∑
k=0

∣∣∣∣∣
∫ (k+1/2)Tb

kTb

r (t) ejωctdt −
∫ (k+1)Tb

(k+1/2)Tb

r (t) ejωctdt

∣∣∣∣∣
2

+
(
cos2 θm

) ∣∣∣∣∣
Kb−1∑
k=0

∫ (k+1/2)Tb

kTb

r (t) ejωctdt +
∫ (k+1)Tb

(k+1/2)Tb

r (t) ejωctdt

∣∣∣∣∣
2

(86)

For the high-SNR case, by analogy with Eq. (86), we propose the ad hoc test

Kb−1∑
k=0

∣∣∣∣∣
∫ (k+1/2)Tb

kTb

r (t) ejωctdt +
∫ (k+1)Tb

(k+1/2)Tb

r (t) ejωctdt

∣∣∣∣∣ <

(sin θm)
Kb−1∑
k=0

∣∣∣∣∣
∫ (k+1/2)Tb

kTb

r (t) ejωctdt −
∫ (k+1)Tb

(k+1/2)Tb

r (t) ejωctdt

∣∣∣∣∣

+ (cos θm)

∣∣∣∣∣
Kb−1∑
k=0

∫ (k+1/2)Tb

kTb

r (t) ejωctdt +
∫ (k+1)Tb

(k+1/2)Tb

r (t) ejωctdt

∣∣∣∣∣ (87)

which is consistent with the ad hoc test in Eq. (60) when θm = 90 deg.
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Analogous to Fig. 7, Fig. 9 is an illustration of the average misclassification probability for the various
classification noncoherent algorithms where the results are all obtained by computer simulation. We again
observe that over a very wide range of SNRs the performance of the high-SNR approximation classifier is
virtually a perfect match to that of the optimum classifier but its implementation is somewhat simpler.
On the other hand, while the performance of the low-SNR classifier converges to that of the optimum
classifier at low SNR as it should, at high SNR it results in considerable degradation. Illustrated in Fig. 10
is a comparison of the performances of the coherent classifiers for the residual and suppressed-carrier
noncoherent classifier cases, the latter being obtained from the discussion in Section VIII of the article.
We observe that, as in the coherent comparison illustrated in Fig. 8, for the optimum and high-SNR
approximation classifiers, the two are again quite similar in performance although now the suppressed-
carrier one is a bit superior. Finally, analogous to Fig. 6, comparison between the corresponding coherent
and noncoherent classifiers for the residual carrier case is illustrated in Fig. 11 and for the optimum metric
reveals a penalty of approximately 1.25 dB or less depending on the SNR.
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Fig. 9.  Misclassification probability for residual carrier noncoherent classifier:  θm = 60 deg.
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Fig. 10.  A comparison of misclassification probability for suppressed and
residual carrier noncoherent classifiers.
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Fig. 11.  A comparison of performance of coherent and noncoherent data format classifiers
for BPSK modulation:  residual carrier case.
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